A brief introductory video explaining Micropore's unique membrane-based system

Watch a video about our unique technology

Our Unique Technology

Contact Us

Search

Scientific Papers

Welcome to our library of scientific papers relating to the science of membrane emulsification and encapsulation. Use our website site search tool to help locate papers relating to a specific research aspects.

Membrane emulsification for the production of uniform poly-N-isopropylacrylamide-coated alginate particles using internal gelation

Hanga, MP and Holdich, RG (2014) Membrane emulsification for the production of uniform poly-N-isopropylacrylamide-coated alginate particles using internal gelation, Chemical Engineering Research and Design, 92(9), pp.1664-1673, DOI: 10.1016/j.cherd.2013.12.010.

Alginate particles, crosslinked by calcium ions, have a number of potential biopharmaceutical industry applications due to the biocompatibility of the materials used and formed. One such use is as microcarriers for cell attachment, growth and then detachment without the use of proteolytic enzymes. A straightforward and reproducible method for producing uniform calcium alginate particles with controllable median diameters which employs membrane emulsification and internal gelation (solid particles contained in the dispersed phase) is demonstrated, as well as functionalisation of the resulting beads with amine terminated poly N-isopropylacrylamide (pNIPAM) to form temperature responsive particles, by taking advantage of the electrostatic interaction between the carboxyl groups of the alginate and amino groups of the modified pNIPAM. Cell attachment, growth and detachment capabilities of these core–shell structures were assessed and successfully demonstrated by using phase contrast microscopy and fluorescent staining with calcein-AM and ethidium homodimer-1.

The formulation used for the alginate particles avoided non-GRAS chemicals by only using food grade and pharmaceutical grade reagents. The median particle size was controllable within the range between 55 μm and 690 μm and the size distributions produced were very narrow: ‘span’ values as low as 0.2. When using a membrane pore size of 20 μm no membrane blockage by the suspended calcium carbonate necessary for internal gelation of the alginate particles was observed. Membrane pore openings with diameters of 5 and 10 μm were also tested, but blocked with the 2.3 μm median diameter calcium carbonate solids.

Monodisperse Liquid Foams via Membrane Foaming

Laura Carballido, Miriam Dabrowski, Friederike Dehli, Lukas Koch, Cosima Stubenrauch*
Institute of Physical Chemistry
Pfaffenwaldring 55, 70569 Stuttgart, Germany
*cosima.stubenrauch@ipc.uni-stuttgart.de, 0049 711 685-64470​

Hypothesis
It is possible to generate fairly monodisperse liquid foams by a dispersion cell, which was originally designed for the generation of fairly monodisperse emulsions. If this is the case, scaling-up the production of monodisperse liquid and solid foams will be no longer a problem.

Experiments
We used the dispersion cell - a batch process - and examined the influence of stirrer speed, membrane pore diameter and injection rate on the structure of the resulting liquid foams. We used an aqueous surfactant solution as scouting system. Once the experimental conditions were known we generated gelatin-based liquid foams and methacrylate-based foamed emulsions.

Findings
We found that (a) the bubble size of the generated liquid foams can be adjusted by varying the membrane pore diameter, (b) no stirrer should be used to obtain monodisperse foams, and (c) the bubble size is not influenced by the air injection rate. Since (i) the output for all investigated systems is up to two orders of magnitude larger compared to microfluidics and (ii) the membrane technology can very easily be scaled-up if run in a continuous process, the use of membrane foaming is expected to be heavily used for the generation of monodisperse liquid and solid foams, respectively.

Uniform polymer beads by membrane emulsification-assisted suspension polymerisation

Authors: M. Alroaithi and S. Sajjadi
Further ref: RSC Adv., 2016, 6, 79745​

This work focuses on a two-stage polymerisation process for the production of uniform polymer beads. Highly uniform droplets were firstly produced by a stirred-vessel membrane emulsification device. Methyl methacrylate (MMA) and a specific grade of polyvinyl alcohol (PVA) were used as monomer and stabiliser, respectively. The effects of various process parameters affecting the droplet size and uniformity including feeding policy, agitation speed, stabiliser concentration, and flowrate were investigated. The evolution of droplet size and its coefficient of variation (CV) were monitored over the course of emulsification. A new start-up policy, validated by monitoring droplet formation at the membrane surface, was introduced that eliminated the non-uniformity in the size of droplets formed early during emulsification. The mechanisms contributing to droplet size distribution broadening at the membrane surface during formation were decoupled from those acting in the emulsification vessel during circulation. The high CV obtained at low PVA concentration and high agitation speed was attributed to drop breakup and coalescence occurring in the emulsification vessel, respectively, after droplets formed. The emulsification was followed by a shear-controlled suspension polymerisation to convert the discrete droplets of monomer to polymer beads. A wide range of reactor impeller speeds and PVA concentrations was studied to find the conditions under which the droplets formed via membrane emulsification would not undergo further break-up or coalesce during polymerisations and a one-to-one copy of the initial droplets with the same CV can be achieved

Controlled multiphase oxidations for continuous manufacturing of fine chemicals

Authors: K. N. Loponova, B. J. Deadman, J. Zhu, C. Rielly, R. G. Holdich, K. K. Hii, K. Hellgardt
Further ref: Chemical Engineering Journal, Volume 329, 1 December 2017, Pages 220-230​

The feasibility of an integrated continuous biphasic oxidation process was studied, incorporating (i) electrochemical generation of an oxidant, (ii) membrane emulsification and an Oscillatory Flow Reactor (OFR) to facilitate mass-transfer in a biphasic reaction system and (iii) product extraction to enable regeneration of the oxidant. The biphasic, organic solvent-free dihydroxylation of styrene by ammonium peroxodisulfate solutions (including electrochemically generated peroxodisulfate) was investigated as a model reaction, both in batch and in an OFR. Heating of peroxodisulfate in a strongly acidic solution was demonstrated to be essential to generate the active oxidant (Caro’s acid). Membrane emulsification allowed mass-transfer limitations to be overcome, reducing the time scale of styrene oxidation from several hours in a conventional stirred tank reactor to less than 50 min in a dispersion cell. The influence of droplet size on overall reaction rate in emulsions was studied in detail using fast image capturing technology. Generation of unstable emulsions was also demonstrated during the oxidation in OFR and product yields >70% were obtained. However, the high-frequency/high-displacement oscillations necessary for generation of fine droplets violated the plug flow regime. Membrane emulsification was successfully integrated with the OFR to perform biphasic oxidations. It was possible to operate the OFR/cross-flow membrane assembly in plug flow regime at some oscillatory conditions with comparable overall oxidation rates. No mass-transfer limitations were observed for droplets <60 μm. Finally, the continuous post-reaction separation was demonstrated in a single OFR extraction unit to enable continuous regeneration of the oxidant

Need a formulation challenge solved? Ask a Micropore expert

At Micropore we enjoy working in partnership with our clients to solve formulation challenges and deliver the highest performing, most sustainable, most cost-effective formulated delivery systems.

Ask an expert

Stay Informed

Keep up to date with innovations at Micropore. Sign up today to stay informed with innovations at Micropore and automatically receive the Micropore newsletter and webinar invites.